
Range Checking 1
ID: 308-BSI | Version: 9 | Date: 11/14/08 4:48:25 PM

Range Checking
Robert C. Seacord, Software Engineering Institute [vita1]

Dan Plakosh, Software Engineering Institute [vita2]

Copyright © 2005, 2008 Pearson Education, Inc.

2005-09-27; Updated 2008-10-06 L4 / D/P, L3

Integer range checking, if implemented correctly, can eliminate vulnerabilities resulting from integer
overflow, truncation, and sign errors.

Development Context
Integer operations

Technology Context
C, C++, IA-32, Win32, UNIX

Attacks
Attacker executes arbitrary code on machine with permissions of compromised process or changes the
behavior of the program.

Risk
Integers in C and C++ are susceptible to overflow, sign, and truncation errors that can lead to exploitable
vulnerabilities.

Description
As you may have expected, the burden for integer range checking in C and C++ is placed squarely on the
programmer’s shoulders. Sometimes it’s relatively easy, sometimes it’s not. It’s relatively easy, for example,
to check an integer value to make sure it is within the proper range before using it to index an array. An
out-of range value (for example, a negative integer) can be used to bypass a check on the upper bound of
an array and cause a buffer overflow. Figure 1 shows an example that uses both implicit type checking and
explicit range checks. The implicit type check results from the declaration, on line 3, of len as an unsigned
integer. In general, it is a good idea to use unsigned types for indices, sizes, and loop counters that should
never have negative values. The memcpy() call on line 7 is also protected by an explicit range check on
line 6 that tests both the upper and lower bounds.

Figure 1. Implementation with implicit type and explicit range checking

 1. #define BUFF_SIZE 10
 2. int main(int argc, char* argv[]) {
 3. unsigned int len;
 4. char buf[BUFF_SIZE];
 5. len = atoi(argv[1]);
 6. if ((0 < len) && (len < BUFF_SIZE)) {
 7. memcpy(buf, argv[2], len);
 8. }
 9. else
10. printf("Too much data\n");
11. }

1. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/274-BSI.html (Seacord, Robert C.)
2. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/268-BSI.html (Plakosh, Daniel)

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/274-BSI.html
http://buildsecurityin.us-cert.gov/bsi/about_us/authors/268-BSI.html
http://buildsecurityin.us-cert.gov/bsi/1084-BSI.html

Range Checking 2
ID: 308-BSI | Version: 9 | Date: 11/14/08 4:48:25 PM

Declaring len to be an unsigned integer is insufficient for range restriction because it only restricts the range
from 0..MAX_INT. The range check on line 6 is sufficient to ensure that no out-of-range values are passed
to memcpy() as long as both the upper and lower bounds are checked. Using both the implicit and explicit
checks may be redundant, but we recommend this practice as “healthy paranoia.”

In other cases, type range checking is more complicated. For example, if x is assigned the product of a, b,
and c, it is necessary to limit the range of a, b, and c so that the value of x cannot exceed the range of values
for whichever integer type x is declared. As integer variables are operated on multiple times in combination
with other integer values, it becomes increasingly difficult to ensure that an integer type range error does not
occur.

While this problem is difficult to solve, there are valid software engineering techniques that can help.
First, all external inputs should be evaluated to determine whether there are identifiable upper and lower
bounds. If so, these limits should be enforced by the interface. Anything that can be done to limit the input of
excessively large or small integers should help prevent overflow and other type range errors. Furthermore, it
is easier to find and correct input problems than it is to trace internal errors back to faulty inputs.

Second, typographic conventions can be used in the code to distinguish constants from variables. They can
even be used to distinguish externally influenced variables from locally used variables with well-defined
ranges.

Third, strong typing21 should be used so that the compiler can be more effective in identifying range
problems.

Pearson Education, Inc. Copyright
This material is excerpted from Secure Coding in C and C++, by Robert C. Seacord, copyright © 2006 by

Pearson Education, Inc., published as a CERT® book in the SEI Series in Software Engineering. All rights
reserved. It is reprinted with permission and may not be further reproduced or distributed without the prior
written consent of Pearson Education, Inc.

21. http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/318-BSI.html (Strong Typing)

http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/coding/318-BSI.html

